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We simulate high-velocity flow in a self-affine channel with a constant perpendicular
opening by solving numerically the Navier–Stokes equations, and analyse the resulting
flow qualitatively and quantitatively. At low velocity, i.e. vanishing inertia, the effective
permeability is dominated by the narrowest constrictions measured perpendicular to
the local flow direction and the flow field tends to fill the channel due to the diffusion
generated by the viscous term in the Stokes equation. At high velocity (strong inertia),
the high-velocity zones of the flow field resemble a narrow tube of essentially constant
thickness in the direction of flow, since the transversal diffusion is weak compared to
the longitudinal convection. The thickness of the flow tube decreases with Reynolds
number. This narrowing in combination with mass balance results in an average
velocity in the flow tube which increases faster with Reynolds number than the
average velocity in the fracture. In the low-velocity zones, recirculation zones appear
and the pressure is almost constant.

The flow tube consists of straight sections. This is due to inertia. The local curvature
of the main stream reflects the flow-tube/channel-wall interaction. A boundary layer
is formed where the curvature is large. This boundary layer is highly dissipative and
governs the large pressure loss (inertial resistance) of the medium. Quantitatively,
vanishing, weak and strong inertial flow regimes can be described by the Darcy, weak
inertia and Forchheimer flow equations, respectively. We observe a cross-over flow
regime from the weak to strong inertia, which extends over a relatively large range
of Reynolds numbers.

1. Introduction
Flow through fracture systems is in many oil reservoirs the dominating fluid

transport mechanism. In order to describe such flow, three aspects of the problem
must be addressed: (i) a description of the topology of the fracture network, (ii) the
geometry of the fracture, and (iii) the flow field within the fracture. The topology
of the fracture network reflects the geological history of the reservoir, and has to be
addressed in this context (Aviles, Scholz & Boatwright 1987; Hirata 1989; Bour 1991;
Velde et al. 1991; Vignes-Adler, Le Page & Adler 1991; Davy, Sornette & Sornette
1992; Davy 1993). Calculations of the permeability of such fracture networks based
on their topology are reported in e.g. Snow (1969), Rottmann (1984), Balberg (1986),
Hestir & Long (1990), Thompson (1991), Odling (1992). The geometry of the fracture
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joints is determined by the fracture mechanisms involved. Recent research on these
mechanisms has shown that the resulting fracture joint geometries possess statistical
scaling properties which transcend the precise mechanisms that produced them:
they are self affine (see e.g. Mandelbrot, Passoja & Paullay 1984; Brown & Scholz
1985; Mecholsky, Passoja & Feinberg-Ringel 1989; Bouchaud, Lapassat & Planès
1990; Dauskardt, Haubensak & Richtie 1990; Hansen, Hinrichsen & Roux 1991;
Tzschichholz & Pfuff 1991; Måløy et al. 1992; Bouchaud 1997; Issa, Hammad &
Chudnovsky 1992; Milman et al. 1993; Schmittbuhl, Sentier & Roux 1993; Kertész,
Horvàth & Weber 1993; Engøy et al. 1994; Roux 1994; Abraham et al. 1994;
Plouraboué et al. 1995; Sharon, Gross & Fineberg 1995).

We address in this paper the third aspect of the problem: what are the features
of the flow field within the fracture? This question is strongly influenced by the
geometry of the fracture joints, and consequently their self-affine character reflects
on the scaling properties of the flow field (Roux et al. 1993). Numerical studies
using lattice gas automata demonstrate that for both low- and high-velocity flow in
a two-dimensional self-affine channel with a symmetry axis parallel to the average
flow direction, the velocity-dependent permeability (later called effective permeability;
(4.12)) is dominated by the area surrounding the narrowest constriction of the channel
(Gutfraind & Hansen 1995; Gutfraind, Ippolito & Hansen 1995). This situation is
presumably peculiar to two dimensions. In three-dimensional crack geometries (i.e.
a two-dimensional fracture surface in a three-dimensional body), we expect this
situation to be quite different: narrow constrictions have less importance as the flow
simply passes around them.

The flow regimes observed in porous media can be summarized as follows: vanishing
inertia described by Darcy’s law, weak inertia described by a third-order correction
term (Mei & Auriault 1991; Wodie & Levy 1991), and strong inertia described by
the Forchheimer equation (Forchheimer 1901). The Darcy law has been supported
experimentally, numerically and theoretically. The same strong support is not found
for the two other equations. The weak inertia equation has some numerical support.
Barrère (1990) observed the third-order term for Reynolds numbers to be larger than
unity, whereas the theory is based on the assumption that the Reynolds number is
much smaller than unity. Recently, Skjetne (1995) found that the weak inertia equation
is valid for low Reynolds number flow through a close cubic packing of spheres and
other periodic porous media. Experimentally, a weak inertia flow regime is supported
by the early data referred to by Muskat (1937) and also from the experiments by
Chauveteau (1965) and Rasoloarijaona & Auriault (1994). The Forchheimer equation
is an empirical equation that has been applied for almost 100 years in porous media
research, but still lacks analytical support. This is probably due to a combination
of the complexity of the governing equations (the Navier–Stokes equations) and the
geometry of natural porous media. There have been several numerical studies of
high-velocity flow in porous media (Couland, Morel & Caltagirone 1988; Edwards
et al. 1990; Barrère 1990; Gipouloux 1992; Souto 1993; Ruth & Ma 1993). Skjetne
(1995) studied the microscopic dissipative mechanisms that contribute to the increase
in pressure loss in the weak inertia and the Forchheimer equations for flow in porous
media.

We study in this paper both low- and high-velocity flow in a two-dimensional
self-affine fracture in the light of the three flow regimes found in porous media. This
is possible as one might view the fracture as a pore with a particular geometry in a
porous medium. As we shall see, this identification gives us access to results already
obtained for porous media. In contrast to Gutfraind & Hansen (1995) and Gutfraind
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et al. (1995), our self-affine fracture has a constant opening, i.e. we are studying
fracture joints in contrast to fracture faults. The cited papers used channels that
were symmetric about an axis parallel to the average flow direction. Our numerical
approach is based on a finite-difference discretization of the Navier–Stokes equations.

The paper is organized as follows. In § 2 we describe the geometry of the fracture on
different scales. The flow problem is introduces in § 3. Various forms of macroscopic
flow equations are presented in § 4. The numerical technique is briefly described in
§ 5. Results for the microscopical flow are described, analysed and discussed in § 6
and average flow properties are compared to macroscopic flow equations in § 7. How
inertial effects lead to increased viscous resistance is discussed in particular in § 8.
Finally, the conclusions are listed in § 9.

2. Geometry of the fracture
2.1. Self-affine fracture

As was pointed out in the introduction, there is now ample evidence, both experimental
and numerical, that fracture surfaces are self-affine. We therefore model the micro
geometry of a natural fracture by a cell containing a two-dimensional statistically
self-affine fracture with a constant opening perpendicular to the fracture orientation.
We choose to study fracture joints, i.e. cracks with constant opening resulting from
mode I fracturing (Lawn 1993), rather than faults. Joints are common in a geological
context. Our conditions apply to the middle sections of mode I fractures. Near the
fracture tips, the fracture opening is wedge shaped.

A self-affine roughness profile y(x) is statistically invariant under an affine trans-
formation of a parallel distance dx and a perpendicular distance dy

dx → λxdx, (2.1)

dy → λydy, (2.2)

where

λy = λHx . (2.3)

H is the Hurst or roughness exponent (Mandelbrot 1982; Barabási & Stanley 1995).
In particular, this leads to the height–height correlation function p(y2 − y1, x2 − x1)
being invariant under the scaling

λHp(λH (y2 − y1), λ(x2 − x1)) = p(y2 − y1, x2 − x1) . (2.4)

Experimentally, H ≈ 0.8 for two-dimensional fractures in three-dimensional bodies
(see e.g. Bouchaud et al. 1990; Måløy et al. 1992), while H ≈ 0.7 in two dimensions
(Hansen et al. 1991; Kertész et al. 1993; Engøy et al. 1994). These values seem
remarkably constant from material to material, and it has been speculated that the
roughness exponent is in fact strictly equal in all cases. These ideas have their origin
in the theory of dynamical critical phenomena, see e.g. Barabási & Stanley (1995).

A full description of a self-affine surface will need the lower cutoff – discretization –
in the x-direction, ε, the lower cutoff in the y-direction, η, the length of the fracture in
the x-direction, Lu, and the width of the fracture in the y-direction, W . The relation
between all of these variables is

W = η

(
Lu

ε

)H
. (2.5)

The roughness amplitude is thus η/εH . In addition to these variables describing the
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Figure 1. The effective channel width for different configurations:
(a) long-sloped channel, and (b) short-sloped channel.

surface, we also have the fracture aperture – the vertical displacement of the two
opposite fracture surfaces – Lp as a parameter.

Usually, self-affine geometries are studied for their scaling properties. However, we
use such a geometry in order to study the local mechanisms of high-velocity flow in
a simplified geometry, but still including a realistic disorder.

If one fixes the fracture opening Lp, the roughness of the fracture W will eventually
dominate Lp at large enough scales Lu. This is irrelevant in our context, however.
The effect of roughness on the flow field is to force it to change direction and speed.
This happens on scales where the roughness is of the same order as Lp. Roughness
on larger scales does not contribute. On the other other hand, on scales where Lp is
much larger than the roughness W , the flow field is only affected near the boundaries.

We discretize the unit cell into N ×M square cells, in the directions parallel (x)
and perpendicular (y) to the fracture average direction, respectively. Each cell is of
size (∆x)(∆y), and the cells are square ∆x = ∆y. The discrete distances in the parallel
and perpendicular directions are

xn = n∆x, n ∈ 0, . . . , N; ym = m∆y, m ∈ 0, . . . ,M. (2.6)

In this study we have used N = 256, M = 61, and a perpendicular fracture opening

Lp = 20 ∆x. (2.7)

Self-affine roughness profiles can be generated by several methods (Voss 1985). We
have chosen to use the Fourier method, since this method automatically results in a
profile with the desired periodicity. We have chosen H = 0.8 in order to mimic real
fractures. The resulting roughness profile is discretized in the y-direction to obtain a
256× 61 grid.

2.2. Effective fracture width

A local effective width of the fracture Lw(x), can be defined as the constriction
measured perpendicular to the local flow direction. Since the pressure drop is strongly
dependent on Lw , we discuss it in some detail. For a straight fracture, Lw = Lp. For
a slope with an angle θ defined in figure 1(a),

Lw = Lp cos(θ). (2.8)

A linear piece with a smaller length d, such that d < Lp sin(θ), Lw can be one of the
diagonals of a parallelogram, where the shortest is shown in figure 1(b):

Lw =
[
L2
p + d2 ± 2Lpd| sin θ|]1/2 . (2.9)

Rough fractures need a further distinction of geometrical features.
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A solid filled wedge pointing into the fracture will be called a tooth, while its inverted
counterpart on the vertically opposite part of the fracture will be called a trough.
These features are always introduced as opposite tooth/trough pairs. Analogous
to Lw in figure 1(b), Lw of a rough profile can be given by the distance between
two diagonally opposing teeth, as can be seen at the constriction at x = 44 ∆x in
figure 2(a), § 6. With reference to the position on one profile, two diagonally opposite
teeth are always a pair consisting of one tooth on the profile and a nearest neighbour
trough.

2.3. Large-scale structure of the system

Our model consists of an infinite two-dimensional spatially periodic structure with
repeated unit cells of size Lu. These unit cells consists of a solid matrix in which there
is a self-affine fracture with an opening of size Lp. The position vector relative to an
origin O is R and can be decomposed into one vector for the position of the unit cell
Rk, where k is the cell-index vector, and the local position inside the unit cell r, and
is given by

R = Rk + r (2.10)

The fluid and solid volumes sum to the total volume (area in two dimensions) of a
unit cell

τ0 = τf + τs. (2.11)

It is convenient to define a porosity

φ =
τf

τ0

, (2.12)

in order to make a connection to work done on high-velocity flow in porous media.
Our model has a porosity given by the ratio of fluid to solid cells, that is φ = 0.328.
The fluid–solid interface is denoted by ∂τfs.

3. Flow problem
The flow problem is governed by the steady-state Navier–Stokes equations for an

incompressible (no-slip) fluid

∇ · u = 0, (3.1)

−∇p = −µ∇2u+ ρ∇ · (uu), (3.2)

u = 0 at ∂τfs, (3.3)

where p is the pressure, u is the local velocity vector, µ is the viscosity and ρ is
the density. The Reynolds number Re is a rough estimate of the ratio of inertial to
viscous forces, and for a characteristic velocity u and length scale Lp is

Re =
ρuLp

µ
. (3.4)

As the viscous term in (3.2) is a diffusion term, the Reynolds number can be interpreted
as the ratio of the velocity of convection u to the velocity of diffusion µ/(ρLp) of the
velocity field itself. The diffusion constant for the velocity field is then µ/ρ.

The large-scale structure of the flow problem is, as noted earlier, conveniently
described in terms of spatially periodic porous media, since the fracture is modelled
as a spatially periodic structure. General properties of transport in spatially periodic
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porous media can be found in Adler (1992). The average of (3.1) over τ0 is obtained
by using the Gauss theorem and the no-slip boundary condition (3.3)

1

τ0

∫
τ0

∇ · ud3r =
1

τ0

∫
∂τ0

u · ds = 0, (3.5)

where s is the area directed out of the unit cell.
Average mass balance can be satisfied in general only if u is spatially periodic. A

spatial average of the velocity is the seepage or Darcy velocity

u =
1

τ0

∫
τ0

ud3r, (3.6)

and the velocity averaged over the fluid volume τf is the so-called interstitial velocity
u∗

u∗ =
1

τf

∫
τ0

ud3r =
u

φ
. (3.7)

In our case, the porosity is artificial. The interstitial velocity is relevant for describing
the flow. However, we will use the seepage velocity, since macroscopic flow equations
are formulated with respect to the seepage velocity.

Since u is spatially periodic and u is related to ∇p by (3.2), ∇p must be spatially
periodic as well. The velocity is driven by a macroscopic homogeneous pressure
gradient (average pressure gradient) G, and the pressure is given by

p(R) = p0 + p̆(R) + G · R, (3.8)

where p0 is a reference pressure and p̆(R) is spatially periodic.
All the pressure loss −G or resistance is generated by local dissipation which is

defined as

Φ = 2µD : D , (3.9)

where D is the rate of strain tensor, and : denotes summing over both tensor indices;

D = 1
2

(∇u+ (∇u)t) , (3.10)

where t denotes the transposition operator. For flow in spatially periodic porous
media, there is a general relationship among the homogeneous gradient, average
velocity and average viscous dissipation Φ (Skjetne 1995)

Φ = −G · u. (3.11)

Alternatively, the pressure loss can be related to the forces (Skjetne 1995)

−G = − µ
φ
∇2u+

1

τf

∫
∂τfs

p̆ds = − µ
τf

∫
∂τfs

ds · ∇u+
1

τf

∫
∂τfs

p̆ds, (3.12)

where s is the area directed out of the fluid.

4. Macroscopic flow equations
Flow in a porous medium is usually described by relations between the average

pressure gradient and the average velocity. In our case, the average velocity in the
y-direction vanishes, so one-dimensional macroscopic flow equations are sufficient.
For vanishing inertia, Re→ 0, the flow is described by Darcy’s law, which is a solution
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of the Navier–Stokes equations with the inertial term set equal to zero, i.e. a solution
of the Stokes equation

−G =
µ

K
u. (4.1)

For weak inertia, it may be shown theoretically by using a homogenization technique
(perturbation theory) that for isotropic homogeneous porous media the correction to
Darcy’s law is a third-order term in velocity (Mei & Auriault 1991; Wodie & Levy
1991):

−G =
µ

K
u+ bu3, (4.2)

where b is a parameter for the nonlinear term. Wodie & Levy (1991) explicitly stated
that

b =
cρ2

K4µ
, (4.3)

where c is only dependent on the geometry of the porous medium. Since K is also
only dependent on the geometry of the porous medium, it seems natural to combine
these parameters into one dimensionless parameter, γ = c/K4. With this notation, the
weak inertia equation can be written

−G =
µ

K
u+

γρ2

µ
u3. (4.4)

Although self-affine surfaces have no characteristic length scales, except their lower
and upper cutoffs, one should not doubt results from perturbation theory where two
characteristic length scales are used. The vertical spacing Lp introduces a microscopic
scale and a macroscopic pressure loss scale is ensured by using a periodic medium.

Strong inertia is usually described by the empirical Forchheimer equation

−G =
µ

Kfh

u+ βρ|u|u, (4.5)

where β is the so-called inertial resistance (or inertial coefficient) and Kfh is a
Forchheimer permeability. Traditionally, it is assumed that Kfh is equal to K . Since
the shape of the flow field may change very much from vanishing to strong inertia,
we do not, at this stage, see any particular reason why Kfh should be equal to K .
Accordingly, we assume that in general Kfh 6= K . However, we will later argue that
they are quite similar. Since the weak and strong inertia regimes are described by
different flow equations it is reasonable to assume that there is a crossover regime
between them where neither of the two flow equations is strictly valid.

In fluid mechanics it is common practice to analyse inertial flow in terms of an
average Reynolds number Re instead of the average velocity u

Re =
ρLp|u|
µ

. (4.6)

Note that the fluid-averaged (interstitial) Reynolds number

Re∗ = Re/φ (4.7)

is larger and closer to the local Re than Re. Working with Re as flow variable instead
of u, we obtain the following for the Darcy, the weak inertia and the Forchheimer
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equations:

−G =
µ2

KρLp
Re, (4.8)

−G =
µ2

KρLp
Re+

γµ2

ρL3
p

Re
3
, (4.9)

and

−G =
µ2

KfhρLp
Re+

βµ2

ρL2
p

Re
2
. (4.10)

Using u∗ or Re∗ as flow variable results in the following parameters:

K∗ = φ−1K, γ∗ = φ3γ, β∗ = φ2β. (4.11)

To better visualize the increased resistance due to inertia, we express the pressure
loss in terms of an effective permeability Ke(Re) defined by

Ke(Re) =
µu

−G. (4.12)

For Darcy’s law Ke is independent of Re:

Ke = K. (4.13)

For the weak inertia Ke is dependent on Re:

Ke =
K

1 + (γK/L2
p)Re

2
. (4.14)

By rearranging this equation into (Barrère 1990)(
1

Ke

− 1

K

)
1

Re
=

γ

L2
p

Re, (4.15)

and then plotting the left-hand side of this equation vs. Re, the data described by the
weak inertia equation follow a straight line with zero intercept.

For strong inertia, the permeability is given by

Ke(Re = 0) = Kfh, (4.16)

so that

Ke =
Kfh

1 + (βKfh/Lp)Re
(4.17)

or for the effective resistance

1

Ke

=
1

Kfh

+
β

Lp
Re. (4.18)

If the data follow the Forchheimer equation for strong inertia, a plot of 1/Ke versus
Re for strong inertia (large Re) should result in a straight line with intercept at 1/Kfh.
To visualize the crossover from weak to strong inertia, it is useful to rearrange the
Forchheimer equation in the same way as the left-hand side of (4.15):(

1

Ke

− 1

K

)
1

Re
=

β

Lp
+
K −Kfh

KKfhRe
. (4.19)

In the limit Re →∞, the right-hand side of (4.19) becomes β/Lp.
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5. Numerics
A point-iterative, finite-difference, artificial compressibility method on a staggered

grid was used to solve the Navier–Stokes equations (Peyret & Taylor 1983). An
important feature of this method is that the constraint (3.1) is not fulfilled during a
transitional stage. The lack of mass balance is used to correct the pressure field by
the following expression:

∂p

∂t
+ C2∇ · u = 0, (5.1)

where C is a positive parameter. When (5.1) converges, the velocity field is divergence
free. For the momentum balance, the time-dependent Navier–Stokes equations are
discretized and solved:

ρ
∂u

∂t
= −ρ∇ · (uu)− ∇p+ µ∇2u. (5.2)

Details on the discretization method, boundary conditions, stability criteria, the code
together with testing results are given in Skjetne (1995). A simulation starts by
applying a pressure gradient G to a zero velocity field. The average velocity is
computed by simply summing all the cell velocities for each component, and the
average pressure gradient is the one that is applied to the system.

The permeability is obtained by solving the Stokes equations. For weak inertia,
we use central differences for the nonlinear term in conservative form in the Navier–
Stokes equations ∇ · uu, and for strong inertia we discretized the nonlinear term
in non-conservative form (convective form) u · ∇u and use second-order upwind
differentiation for the derivative part and linear interpolation for the first u. All
fluid/solid configurations are treated separately to obtain higher-order discretization
near the fracture walls. To analyse the small increase in effective flow resistance, we
let the effective permeability converge with the convergence threshold (Skjetne 1995)
set to 10−10. For convenience we have used

µ = ρ = ∆x = 1. (5.3)

6. Microscopic description
We have done more than 100 simulations of velocity and pressure fields in the

fracture. The average Reynolds number ranges from 0 to 52. For average Reynolds
numbers less than unity, we have chosen to use the central difference for the convective
terms, and for larger average Reynolds numbers we have used upwind discretization
for the convective terms. The central difference scheme has also been tested for larger
Reynolds numbers, but tends to be less stable and gives in general a higher pressure
loss for the same rate than the upwind code. The difference in pressure gradient
in the two schemes is about 20% for Re = 33, but decreases for smaller average
Reynolds numbers. In total, 27 simulations with the central difference scheme, and 33
simulations with the upwind scheme are presented. In this section, however, we will
concentrate on the flow behaviour for a few average Reynolds numbers.

In this section, velocity and pressure fields are described on a microscopic scale
in different ways. This is done to better our understanding of flow and pressure
loss mechanisms which contribute to the relationships between average velocity and
average pressure gradient. A macroscopic analysis of these relationships is done in
the next section.
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Figure 2. Absolute value of the velocity fields for (a) Re = 0 and (b) Re = 52. (c) Trajectories of
the maximum velocity for Re = 0 (dotted line) and Re = 52 (solid line).

6.1. Absolute velocity field

We have constructed a plot which displays the shape of the main stream of the flow
field. In this plot the absolute value of the velocity vector field |u| is plotted with a
grey-scale (white corresponds to highest absolute value). To enhance the visualization
of the main stream, a black line connects grid cells with maximum absolute velocity
in neighbouring vertical columns. The black line approximately follows the main
stream through the fracture. We present in figure 2(a) the Stokes solution (vanishing
inertia or Re = 0) and in figure 2(b) the Navier–Stokes solution with the highest
Reynolds number, Re = 52. A smoother maximum velocity trajectory for Re = 0
and Re = 52 is plotted in figure 2(c). For each column, the vertical position of the
second-order interpolated maximum velocity (using the cell of maximum velocity
and its two nearest neighbours in each column) is plotted. The absolute velocity of
the not interpolated trajectory is plotted versus x in figure 3. To better visualize
the overall topology of the velocity field we have constructed histograms showing
absolute velocity distribution functions (figures 4 and 5).

For vanishing inertia, figure 2(a), the main stream is smooth and fills the central
parts of the fracture. The main stream resembles a balloon that is compressed between
the fracture opening. The fracture is effectively narrowest (smallest effective width)
where there are large diagonally opposite peaks acting like short sloped channels
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(figure 1b), such as for the following indices along the x-direction: 40, 95, 220 and
250. At these x positions, the absolute velocity is maximal. This is certainly due to
mass balance.

The troughs play a very different role than the peaks, as they are not constricting
the main stream. Instead they are located peripherally to the central parts of the
fracture. They are sheltered by the peaks and form backwaters not filled by the main
stream. At some places, the distance between the fracture walls normal to the main
stream flow direction is larger than the effective fracture width defined in figure 1(b),
since the absolute value of the slope of the main stream is smaller than the average
slope of the fracture walls. At x = 50 ∆x the distance between fracture walls normal
to the main stream flow direction is even larger than the profile spacing (20 ∆x) and
approaches the longest diagonal defined by (2.9), since the sign of the slope of the
main stream flow is opposite to that of the average slope of the fracture wall around
that position.

It is seen in figure 2(b) that the shape of the high-velocity part of the field resembles
a narrow tube with essentially constant thickness which is close to the thickness of
the narrowest openings normal to the flow tube. The flow tube takes short cuts
and follows only partly the local shape of the fracture. At obstructions, such as
for x = 190 ∆x, the flow tube has a tendency to impinge on the fracture wall and
change direction. Between the flow-tube/fracture-wall contact points, the flow tube
follows straight sections. The almost constant thickness of the flow tube results from
convective transport of momentum which dominates over diffusional transport of
momentum perpendicular to the flow tube. Also, strong inertia leads to the flow tube
impinging on the fracture wall.

6.1.1. Maximum absolute velocity trajectory

The trajectories of the maximum velocity are plotted in figure 2(c) for Re = 0
(dotted line) and Re = 52 (solid line). It is seen that the low-velocity trajectory
follows the central parts of the fracture. By comparison, the high-velocity trajectory
is closer to the fracture wall, especially at positions where the flow tube tends to
impinge on the fracture wall. In some regions, the high-velocity flow trajectory is
longer than the low-velocity flow trajectory, such as for 0 6 x 6 40 ∆x, where the
high-velocity flow tube seems to be squeezed against the outer fracture wall in the
curve. At positions where there is no apparent downstream constriction for the flow
tube, the high-velocity flow trajectory is straighter (shorter) than the low-velocity flow
trajectory. In the narrowest constrictions the positions of the trajectories for low and
high velocities coincide.

An estimate for the tortuosity is made by calculating the length of the maximum
absolute velocity trajectory, Le. This length is calculated for different Reynolds num-
bers and is compared to other lengths in the system in table 1. In the table ‘Profile,
absolute’ stands for the absolute length (‘taxi cab’ norm) of the roughness profile and
‘Profile midpoints’ stands for the sum of distances between the midpoints (Euclidean
norm). In the calculation of these norms, the periodicity at the unit cell boundaries is
taken into account. It is interesting to note that Le(Re = 52) < Le(Re = 0). This does
not support a hypothesis that an increase in flow tortuosity with Reynolds number is
responsible for extra resistance (Firoozabadi & Katz 1979). Our observation is not in
conflict with the common belief that high-velocity resistance is highly dependent on
the tortuosity of the pore geometry.

The reduction in Le in the interval from Re = 4 to Re = 15 is 3.1 ∆x while from
Re = 15 to Re = 52 the reduction is only 1.4 ∆x. Even though the latter interval of
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Re Le [∆x] Le/nx Le − nx [∆x]

0 278.35 1.087 22.35
4 278.51 1.088 22.51
15 275.45 1.076 19.45
52 274.04 1.070 18.04

Profile, absolute 526 2.055 270
Profile, midpoints 404 1.578 148
Unit cell, nx 256 1 0

Table 1. Length of maximum velocity trajectory, Le, and roughness profile.
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Figure 3. The velocity on the maximum absolute velocity trajectory in units of the interstitial
velocity versus x for (a) Re = 0, (b) Re = 4, (c) Re = 15, and (d) Re = 52. The actual trajectories
for Re = 0 and Re = 52 are displayed in figure 2.

Reynolds numbers is more than 3 times larger than the former, the reduction of Le
for the former is about twice of the reduction for the latter. From Re = 0 to Re = 4
there is virtually no change in Le. Based on this, it seems that the largest changes in
the velocity field are from Re = 4 to Re = 15.

The absolute velocity at the maximum absolute velocity trajectory is shown for (a)
Re = 0, (b) Re = 4, (c) Re = 15 and (d) Re = 52 in figure 3. The velocity is in units
of the interstitial velocity u∗:

u∗ = u/φ. (6.1)

These plots give some interesting information about the velocity fluctuations along
the flow tube. For Re = 0 and Re = 4 the plots are very similar. High-velocity peaks
are located at the narrowest constrictions. The peaks are rather symmetric in shape
and the highest is at about 3.8 u∗. The peaks extend up from a velocity base level
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of about 1.8 u∗, so that the relative height of the highest peaks is about 1.8 u∗. In
other words, there is an intense and localized acceleration/deceleration (in space) of
the main stream near the narrowest constrictions. In comparison, a straight channel
would have a constant maximal velocity equal to 1.5 u∗. The shape of the curve for
Re = 15 is somewhat in between the shape of the curves for Re = 0 and Re = 52, so
we describe only the shape for the highest Reynolds number and compare it to the
shape for the smallest Reynolds number.

There are both similarities and differences between the velocity curve for Re = 0
and Re = 52. For Re = 52, the base level of the velocity is about 3.0 u∗, which is
more than one unit more than for Re = 0 and twice that of a straight channel. The
position of the three highest peaks for Re = 0 is almost the same as for Re = 52,
but the height relative to the base level is reduced. For Re = 52, the absolute height
of the highest peaks, e.g. the one at x = 250 ∆x, is only about 0.1 u∗ higher than for
vanishing inertia. As a consequence, the reduction in the height of the peaks relative
to the ground level is mainly due to the increase of the base level. In brief, the
mainstream acceleration/deceleration is less intense for high-velocity flow than for
low-velocity flow.

Regarding the height and position of peaks, the highest peak for Re = 52 at
x = 190 ∆x is virtually absent for Re = 0. This can be qualitatively explained as
follows: because of the inertia, the flow tube is pressed against the obstruction, the
flow tube is compressed and as a result of the required mass balance, the flow tube
accelerates. The same type of phenomenon can be seen in the peak at x = 100 ∆x for
Re = 0, which for Re = 52 has moved to a position somewhat further downstream.
This can be understood by comparing figures 2(a) and 2(b), where it is seen that for
Re = 0 the peaks around the position x = 100 ∆x form the narrow constriction which
leads to acceleration/deceleration by mass balance, while for Re = 52 the right-most
peak forms an obstruction which the flow tube is pressed against.

With respect to peak shape, it is also seen in general that the peaks for Re = 52
have no upstream–downstream symmetry. All the peaks are skewed, with a steep
acceleration on the upstream side and with a smeared out tail on the downstream
side. Physically, this asymmetry may be explained by the high-velocity spots being
swept downstream by convection. Mathematically, the Navier–Stokes equations are
convection/diffusion equations (with a source) for the transport of momentum and
it is the dominance of convection over diffusion that results in the high-velocity
tail.

In brief, the most striking aspects of high-velocity as compared to low-velocity
trajectories are: (i) the high-velocity trajectory is shorter than the low velocity-
trajectory, (ii) near obstructions the high-velocity trajectory is closer to the fracture
wall than the low-velocity trajectory and for high-velocity the velocity is peaked,
(iii) in the narrowest constrictions both the scaled maximum absolute velocity and
the position of the velocity trajectory are almost the same for low-velocity and
high-velocity flow.

6.1.2. Absolute velocity distribution

The previous discussion demonstrated that the base level of the maximum absolute
velocity is not proportional to the interstitial velocity. To check if this is part of
a general trend, we now study the distribution (histogram) of absolute velocity. To
provide a reference, we first study the histogram for Hele-Shaw flow, i.e. flow in a
straight channel as shown in figure 4.
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Figure 4. Velocity histogram for a Hele-Shaw cell. The total number of bins is 100. The sum of
counts in the bins is equal to unity (normalized). The velocity axis is in units of the interstitial
velocity. The counts in the the last bin is 0.2.

The histogram is constructed from the velocity profile

ud = 3
2
(1− y2

d), ∀ yd ∈ (−1, 1), (6.2)

where ud = u/u∗ and yd = 2y/Lp; u
∗(= 2

3
u(0) = 2

3
umax) is the interstitial velocity, Lp is

the channel width, and y is the height relative to the centre of the channel. Each bin
in a histogram is an interval in ud. The size of the intervals is constant. The shape in
figure 4 is given by the resulting increments in yd, which scales as the absolute value
of the derivative of yd with respect to ud:∣∣∣∣∂yd∂ud

∣∣∣∣ ∼ (1− 2
3
ud)
−1/2 =

{
1 + 1

3
ud for ud � 3

2

→∞ for ud → 3
2
.

(6.3)

Histograms for the rough fracture are shown in figure 5, for (a) Re = 0, (b) Re = 4,
(c) Re = 15 and (d) Re = 52. The histogram for Re = 0 (figure 5a) has two peaks:
one for zero velocity and one for about 1.8 u∗. The position of the last peak is similar
to the base level in figure 3(a). The first peak is sharper and higher than the second
peak. For high velocities, the distribution function falls off with a maximum for about
3.7 u∗, which is the same as the velocity of the highest peaks in figure 3(a).

In comparison, the first peak is not seen for the Hele-Shaw cell. It is a result
of low-velocity flow in peripheral troughs. The second peak resembles the peak for
the Hele-Shaw cell, but is shifted towards a higher velocity and is smeared out. The
shift is due to two effects. First, low velocity in peripheral troughs results in a low
interstitial velocity in the normalization, and second a local velocity in the y-direction
contributes to the absolute velocity field, but not to the interstitial velocity. Smearing
of the second peak is due the variation of effective width Lw in the fracture.

The histogram for Re = 4 is similar to that of Re = 0, except for the first peak for
zero velocity which has increased. From Re = 4 to Re = 15 the low-velocity peak has
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Figure 5. Velocity histogram for the self-affine fracture for (a) Re = 0, (b) Re = 4, (c) Re = 15
and (d) Re = 52. The total number of bins is 100. The sum of counts in the bins is equal to unity
(normalized). The velocity axis is in units of the interstitial velocity.

become higher and broader. The high-velocity peak is lower and shifted to higher
velocities. For Re = 52 the area of the first peak has increased, and the second peak
is further shifted to a velocity of about 3.0 u∗, which corresponds to the base level
in figure 3(d ). The density of intermediate velocities is reduced. To sum up, there is
a strong segregation of velocities with increasing Reynolds number, and the velocity
in the flow tube increases much faster than the interstitial velocity. This is a general
effect which may explain some of the increased pressure loss for high-velocity flow in
porous media.

6.1.3. Velocity vector fields

To better visualize details of low- and high-velocity fields, velocity vector fields are
presented for Re = 0 and Re = 52 in figure 6 and figure 7, respectively. The figures
cover the fracture from left to right. The two velocity fields are very different. For
Re = 0, it is seen that the velocity field does not fill the deepest troughs, but fills
other parts quite well. For Re = 52, the backwater regions are much larger than for
low velocity, and the high-velocity flow tube is clearly seen. The high-velocity tube
drives low-velocity vortices in backwaters, such as the large recirculation zone below
the flow tube for 0 < x < 30 ∆x.

Transversal narrowing of the flow tube is observed at some peaks, e.g. for the peaks
at x = 153 ∆x and x = 170 ∆x. The peaks peel off the outer layer of the flow tube,
and help keep an almost constant thickness of the flow tube. Between such peaks, in
open space, the flow tube broadens slightly. This broadening effect may be viewed
as a transversal diffusion effect of the viscous term in the Navier–Stokes equation.
A flow tube impinging on the fracture wall is seen for about x = 185 ∆x. At this
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Figure 6 (a, b). For caption see facing page.

position the flow tube comes very close to the fracture wall. It will be seen in the next
subsection that this impinging leads to a large pressure loss.

6.2. Pressure field

Pressure fields for Re = 0 and Re = 52 are plotted as three-dimensional surfaces with
lighting in figures 8(a) and 8(b). The pressure field for Re = 0 falls off smoothly in the
x-direction, and with the largest pressure losses where the effective width is smallest.
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Figure 6. Velocity vector fields for Re = 0 for (a) 0 6 x 6 64 ∆x, (b) 64∆x 6 x 6 128∆x, (c)
128∆x 6 x 6 192∆x, (d) 192∆x 6 x 6 256∆x. The maximum size of the vectors in each plot is
equal to the size of three grid cells.

The narrowest constrictions do not, however, dominate the pressure loss completely.
Note that for vanishing inertia all the pressure loss is dissipative.

For Re = 52 the pressure field is much more varied, and not all the local pressure
loss is dissipative. In the backwaters, filled with vortices, the pressure is virtually
constant, because the velocity in the recirculation region is much lower than in
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the flow tube. Even though the vortices are eye-catching on a velocity vector plot,
they do not contribute to the pressure loss. There are regions with pressure loss
perpendicular to the flow tube, such as for x < 30 ∆x. In these regions part of the
pressure gradient almost certainly provides the centripetal force needed to bend the
flow tube. This effect is essentially non-dissipative since the flow resembles solid-
body rotation for which there is no dissipation. In the narrowest constrictions the
largest pressure losses are found. These losses are partly non-dissipative and partly
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Figure 7. Velocity vector fields for Re = 0 for (a) 0 6 x 6 64∆x, (b) 64∆x 6 x 6 128∆x, (c)
128∆x 6 x 6 192∆x, (d) 192∆x 6 x 6 256∆x. The maximum size of the vectors in each plot is
equal to the size of three grid cells.

dissipative. The non-dissipative loss is due to acceleration of the flow tube (figure 3),
because of the possible non-dissipative exchange between kinetic energy and pressure,
i.e. the Bernoulli effect. The Bernoulli effect can be seen mathematically by writing
the Navier–Stokes equation on the alternative form

∇(p+ ρ 1
2
|u|2) = ρu× ω − µ∇× ω, (6.4)
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(b)

50
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50

Figure 8. Normalized pressure field for (a) Re = 0, (b) Re = 52.

where ω = ∇× u is the vorticity. For irrotational flow, ω = 0, there may be a non-
dissipative exchange between pressure and kinetic energy in the flow direction. Dissi-
pative pressure loss mechanisms are discussed in § 8.

In figure 9 normalized pressure profiles (average pressure in each vertical column)
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Figure 9. Normalized pressure profiles (average pressure in each vertical column) for (a) Re = 0,
(b) Re = 52, and the pressure fluctuation p̆ in units of the total pressure loss for (c) Re = 0 and (d)
Re = 52.

K [∆x2] Kfh [∆x2] γ[1] β [1/∆x]

2.82 2.964 1.042 0.2387

Table 2. Parameters obtained from least squares fits

for (a) Re = 0, (b) Re = 52, and the pressure fluctuation p̆ in units of the total
pressure loss for (c) Re = 0 and (d) Re = 52, are presented to better visualize the
pressure change along the fracture. Note that for the pressure fluctuations (figure 9c
and 9d ), a positive slope means less pressure loss than on average and a negative
slope more pressure loss than on average. For Re = 0 it is seen that the derivative
of the pressure in the x-direction is always negative, and it is most negative at the
narrowest constrictions. For Re = 52, the derivative of the pressure in the x-direction
is somewhere positive. The reason for this pressure increase may partly be that it
balances the centripetal acceleration, but it is more likely that the pressure increases
because the flow tube decelerates due to the Bernoulli effect. By comparing figure 9(b)
and 9(d ) with figure 3(d ) it is seen that the largest pressure increase is correlated with
the largest deceleration of maximum absolute velocity trajectory.

7. Macroscopic analysis
The results of the fits are summarized in table 2. The parameters based on interstitial

velocity or Reynolds number, (4.11) with φ = 0.328, are given in table 3. In brief, we
have found that the data are well described by Darcy’s law, the weak inertia equation
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K∗ [∆x2] K∗fh [∆x2] γ∗[1] β∗ [1/∆x]

8.60 9.037 3.677× 10−2 2.568× 10−2

Table 3. Parameters based on interstitial velocity obtained from least squares fits

and the Forchheimer equation for no inertia, weak inertia and strong inertia, respec-
tively, and that there is a crossover between the weak and strong inertial flow regimes.

7.1. Permeability

It is interesting to compare the simulated K , with a K estimated from the geometry
of the fracture. The permeability was calculated to be K = 2.82. The smallest effective
width is found at about x = 45 ∆x, where the effective width is about 7 ∆x, and the
largest pressure loss is found there.

The fracture can be viewed as a serial coupling of N fractures with effective widths
Lw,i and length along the flow path ∆xi. For simplicity we can assume that each
section has a permeability given by the permeability of a straight fracture with width
equal to Lw,i, so that Darcy’s law for section i can be written

−
(

dp

dx

)
i

=
12µ

L2
w,i

up,i =
12µ

L3
w,i

wtotu, (7.1)

where up,i is the average velocity in fracture number i, and the total height of the
model wtot is 61 ∆x. The total pressure loss over the length of the model Lu is then

−∆p

Lu
=
∑
i

12µwtot

L3
w,i

∆xi
Lu

u, (7.2)

so that the permeability of the medium becomes

K =

(
Lu

12wtot

∑
i

∆xi

L3
w,i

)−1

. (7.3)

The permeability is dominated by sections with large ∆xi/L
3
w,i. For example, to obtain

a pressure loss in the widest section Lw,max = Lp = 20 ∆x equal to the narrowest
Lw,min = 7 ∆x, the length of the widest fracture must be 23.3 (= 203/73) times longer
than the narrowest fracture. This is in accordance with what was found in Gutfraind
& Hansen (1995), Gutfraind et al. (1995).

With this information, an upper bound for the permeability can be estimated by
using the equation for the permeability of a straight fracture of width Lp and length
nx = 256 ∆x, for which

K = 1
12
L2
p. (7.4)

Taking into account the porosity, the simulated permeability is estimated as

K = φ 1
12
L2
p = 10.9. (7.5)

As expected, this permeability is higher than the simulated K .
Another way to see if the permeability is realistic is to use (7.3) and solve for a
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Figure 10. Simulation results of weak inertia. Fit of a straight line with constant a0 and slope a1.
By using (4.15), a1 = γ/L2

p, it is found from the plot that γ = 1.042.

characteristic effective width Lw,c defined by

1

Lw,c
=

(
1

Le

∑
i

∆xi

L3
w,i

)1/3

, (7.6)

so that

Lw,c =

(
12wtotLeK

Lu

)1/3

= 13.1 ∆x, (7.7)

where Le = 278.35 ∆x has been used. This effective width is somewhat smaller than
the average of the smallest effective width 7 ∆x and Lp, 13.5 ∆x.

7.2. Weak inertia

It is seen from the simulations that for Re ' 10−2, the relative decrease in Ke from K
is only 8.76× 10−7 and for Re ' 10−1 it is 7.48× 10−5. In other words, the decrease
in permeability is very small. To check whether the data can be described by the
weak inertia equation, we have fitted a straight line in 10−2 < Re < 10−1 to the data
arranged as the left-hand side of (4.15) in figure 10. It is seen that a straight line fits
very well with an intercept 5.0 × 10−6 and a slope 2.6 × 10−3. The straight line does
not have zero intercept, which it should have if it followed the weak inertia equation.
The constant term is, however, small, and for Re = 0.1 the constant term contributes
less than 2% of the total signal. For larger Re the constant is even less significant. In
figure 11 the fit from figure 10 is extended up to Re ' 1.0 and the constant term can
hardly be seen at all. We therefore use the slope from the fit in figure 10, (4.15) and
(2.7) to estimate the weak inertial coefficient γ = 1.04. From (4.9) and (5.3) it can be
calculated that the estimated additional pressure loss due to weak inertia at Re = 1
is only 0.73% of the Darcy pressure loss.

7.3. Crossover from weak to strong inertia

In figure 11 it is also seen that for the largest Re there is a systematic departure
from the straight line. The weak inertia equation holds theoretically, at least, for
Re � 1.0. It is likely to break down for Reynolds numbers of the order of unity,
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Figure 12. Simulation results for the crossover from weak to strong inertia.

since homogenization of the Navier–Stokes equations shows that the leading-order
flow problem becomes non-linear (Sanchez-Palencia 1980; Auriault et al. 1990). That
the trend is lower than the fit is in accordance with a crossover from the weak
inertia equation to a Forchheimer equation. If the data followed a Forchheimer
equation with Kfh = K , they should be constant, i.e. follow a straight line with zero
slope.

To check how this crossover evolves for larger Re, we plot data in the same way
as in figures 10 and 11, but with Re > 1, i.e. in the region where the weak inertia
equation may not hold theoretically. As can be seen in figure 12 there is a crossover
from a straight line with zero (not strictly) intercept to an almost constant. For
high Re this result is in accordance with the Forchheimer equation formulated by
(4.19). The crossover region from weak to strong inertia spans a significant interval
in Reynolds number and can be approximately defined by 1 < Re < 25.
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7.4. Strong inertia

To better check whether the strong inertia data follow Forchheimer equation, we
have plotted the data according to (4.18) in figure 13, where the data for Re > 25
are fitted to the Forchheimer equation. In this plot the y-axis is the effective inertial
resistance (1/Ke). The Forchheimer equation follows the strong inertial data well with
Kfh = 3.07 and β = 0.2446. We have thus that the relative difference between Kfh and
K is 8.8%. It is seen that 1/Ke is almost constant in the weak inertial regime, while
1/Ke is about 3 times larger than 1/K for the largest Re = 52.

8. Discussion of pressure loss effects
To find the physical effects that contribute to the increase in the effective resistance

1/Ke for vanishing and strong inertia, we look at how the effective resistance may
change because of the changes in the shape of the velocity field. For the Darcy flow
regime, the shape of the flow field (velocity divided by e.g. the maximum velocity) is
independent of Re, and the resistance is independent of Reynolds number.

For inertial flow, the shape of the flow field changes with Reynolds number. The
extra increase in resistance is a result of this change and in particular the changes that
increase the dissipation. One such effect is the buildup of boundary layers. However,
this gives a pressure loss which scales with Reynolds number as Re3/2, and is thus not
sufficient to explain the Forchheimer pressure loss. Relationships for developing flow
between flat plates and in ducts have been used to model flow through consolidated
and granular media (Du Plessis & Masliyah 1988, 1991), and resulted in the same
power of 3/2 in the high-velocity boundary layer flow regime. We note that ideal
boundary layers do not take into account any effects of flow tubes as observed
in this study. Since the velocity in a flow tube increases faster than the interstitial
velocity, the pressure loss for boundary layers associated with flow tube bends will be
higher than for ideal boundary layers with a Reynolds number based on an average
velocity. This may explain the power 2 in the Forchheimer equation. The narrowest
constrictions seem to contribute most to the linear term in the Forchheimer equation
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as the maximum trajectory in the flow tube does not come closer to the fracture wall
with increasing Reynolds number.

9. Conclusions
Low- and high-velocity flow in a self-affine fracture with a constant perpendicular

opening has been simulated by solving numerically the Navier–Stokes equations. For
the Stokes solution the velocity field tends to fill the fracture. However, the most
peripheral troughs of the fracture do not contribute to the transport. The diffusional
character is attributed to the smoothing effect of the viscous (diffusion) term in the
Stokes equations.

Strong inertia leads to three main effects: (i) the shape of the absolute velocity
field resembles a narrow tube of essentially constant thickness equal to the smallest
effective widths of the fracture, (ii) the flow tube has linear sections and bends where
it impinges on the fracture wall, and (iii) the velocity in the flow tube increases faster
than the interstitial velocity. Effect (i) results from a transversal diffusion which is
weak compared to the longitudinal convection; (ii) can be explained in the same way
as (i) but used for diffusion in the longitudinal direction, (iii) is a result of flow tube
narrowing with increasing Reynolds number.

We argue that the Forchheimer equation can be divided in geometrically separate
parts. That is, the linear contribution is dominated by the narrowest constrictions
for both low- and high-velocity flow, whereas the zones where the flow tube wall
impinges on the fracture wall contribute mainly to the Forchheimer term, and not
particularly much to the Darcy term for low-velocity flow.

Quantitatively, vanishing, weak and strong inertial flow regimes were well described
by the Darcy, weak inertia and Forchheimer flow equations, respectively. A cross-over
flow regime from the weak to strong inertia is also observed.

Financial support was received from the Research Council of Norway through the
non-Darcy Flow projects (426.91/063 and 111241/431) of the PROPETRO program.
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